

GUÍA DOCENTE 2025-2026

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: Biotec			cnología Alimentaria			
PLAN DE ESTUDIOS:			Grado en Ciencia y Tecnología de los Alimentos			
FACULTAD : Facultad			d de Ciencias de la Salud			
CARÁCTER DE ASIGNATURA:			l	LA Obligatoria		
ECTS:	6					
CURSO:	Cua	uarto				
SEMESTRE: Primero						
IDIOMA EN QUE IMPARTE:		SE	Castellano			
PROFESORADO:			Dr. Thomas Widmann			
DIRECCIÓN DE ELECTRÓNICO:		CORREO		thomas.widmann@uneatlantico.es		

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

No aplica.

CONTENIDOS:

- Tema 1. Introducción.
 - 1.1. Concepto de Biotecnología.
 - 1.2. Origen y desarrollo histórico.
 - 1.3. Biotecnología Alimentaria.
- Tema 2. Tecnología enzimática aplicada a la producción de alimentos.
 - 2.1. Bases de la Tecnología enzimática.

- 2.2. Enzimas en la Industria Alimentaria.
- 2.3. Fuentes de enzimas.
- 2.4. Producción de enzimas.
- 2.5. Aplicaciones en la Industria Alimentaria.
- Tema 3. Ingeniería genética aplicada a la producción de alimentos.
 - 3.1. Genética y Evolución.
 - 3.2. Mecanismos naturales de modificación genética.
 - 3.3. Ingeniería Genética.
 - 3.4. Ingeniería Molecular.
 - 3.5. Aplicaciones en Microorganismos.
 - 3.6. Aplicaciones en Vegetales.
 - 3.7. Aplicaciones en Animales.
- Tema 4. Aplicaciones de la biotecnología a la producción de alimentos I: Fermentaciones.
 - 4.1. Fermentaciones en la Industria Alimentaria.
 - 4.2. Bebidas alcohólicas.
 - 4.3. Productos de panadería.
 - 4.4. Productos vegetales.
 - 4.5. Productos cárnicos.
 - 4.6. Productos marinos.
 - 4.7. Productos lácteos.
- Tema 5. Aplicaciones de la biotecnología a la producción de alimentos II:
 Aditivos
 - 5.1. Aditivos.
 - 5.2. Ácidos orgánicos.
 - 5.3. Aromas y Edulcorantes.
 - 5.4. Vitaminas y pigmentos.
 - 5.5. Polisacáridos.
 - 5.6. Proteínas y aminoácidos.
- Tema 6. Futuro de la biotecnología en la producción de alimentos
 - 6.1. Cultivo de carne in vitro.
 - 6.2. Impresión de alimentos en 3D.
 - 6.3. Seguridad alimentaria.
- Tema 7. Normativa, Legislación y Sociedad.
 - 7.1. Alimentos Transgénicos y Seguridad para la Salud y el Medio Ambiente.
 - 7.2. Biotecnología y sociedad.

PROGRAMA PRÁCTICO

- Extracción de material genético, digestión con enzimas de restricción y electroforesis en gel de agarosa.
- Fermentación de chucrut y análisis químico y microbiano.
- Prueba de sensibilidad y resistencia antimicrobiana.
- Microbiología predictiva en la industria alimentaria.

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG1 Organizar y planificar adecuadamente el trabajo personal, analizando y sintetizando de forma operativa todos los conocimientos necesarios para el ejercicio profesional del científico y tecnólogo de los alimentos.
- CG2 Aplicar sus conocimientos, la comprensión de estos y sus capacidades de resolución de problemas en el ámbito de la ciencia y la tecnología de los alimentos, mediante argumentos o procedimientos elaborados y sustentados por ellos mismos.
- CG3 Desenvolverse en situaciones complejas o que requieran el desarrollo de nuevas soluciones tanto en el ámbito académico como laboral o profesional en el campo de la ciencia y tecnología de los alimentos.
- CG4 Identificar sus propias necesidades formativas en el área de la ciencia y tecnología de los alimentos y de organizar su propio aprendizaje con un alto grado de autonomía en todo tipo de contextos que puedan surgir en el estudio de la ciencia y la tecnología de los alimentos.
- CG5 Liderar proyectos colectivos en el sector de la ciencia y la tecnología de los alimentos valorando las opiniones e intereses de los diferentes integrantes del grupo.
- CG6 Perseguir estándares de calidad en el ámbito de la ciencia y tecnología de los alimentos basados, principalmente, en un aprendizaje continuo e innovador.
- CG7- Aplicar un razonamiento crítico y asumir y reflexionar sobre las críticas efectuadas hacia el propio ejercicio de la profesión de graduado en ciencia y tecnología de los alimentos.
- CG8 Adoptar responsabilidades sobre los diversos compromisos y obligaciones éticas consustanciales a la función profesional como graduado en ciencia y tecnología de los alimentos considerando, especialmente, los principios democráticos en la relación con los demás.

COMPETENCIAS ESPECÍFICAS:

Que los estudiantes sean capaces de:

- CE38 - Aplicar los conocimientos de microbiología, bioquímica y genética en la elaboración y obtención de alimentos fermentados y alimentos basados en organismos transgénicos, de cultivos iniciadores y enzimas con propiedades adecuadas.

RESULTADOS DE APRENDIZAJE:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje:

- Utilizar los aditivos disponibles gracias a la Biotecnología.
- Aplicar las enzimas y biorreactores a la producción de alimentos.
- Conocer los aspectos éticos y legales relacionados a la aplicación de las biotecnologías en la industria alimentaria.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método Expositivo.
- Estudio y Análisis de Casos.
- Resolución de Ejercicios.
- Aprendizaje Basado en Problemas.
- Aprendizaje Cooperativo / Trabajo en Grupo.
- Trabajo Autónomo.

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

Actividades formativas				
	Clases expositivas	26		
Actividades	Clases prácticas	16		
dirigidas	Clases prácticas (laboratorio)	6		
	Seminarios y talleres	4		
Actividades	Supervisión de actividades	4		
supervisadas	Tutorías (individual / en grupo)	26		
	Preparación de clases	34		
Actividades	Estudio personal y lecturas	20		
autónomas	Elaboración de trabajos	6		
	Trabajo individual en campus virtual	4		
Actividades de evaluación	Actividades de evaluación	4		

El primer día de clase, el profesor proporcionará información más detallada al respecto.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Ponderación	
Evaluación	Elaboración de 1 Trabajo Final	20%
continua	Entregas de 2 Ejercicios	10%
	1 Prueba Parcial	20%
Evaluación final	1 Prueba teórico-práctica Final	50%

La superación de las prácticas, así como la elaboración de un trabajo es obligatorio y necesario para aprobar la asignatura. En caso de no haberse superado, se perderá el derecho a la convocatoria ordinaria y extraordinaria.

La calificación del instrumento de la **evaluación final** (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) y del **cuaderno de prácticas no podrá ser inferior, en ningún caso, a 4,0 puntos** (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de uno dos exámenes teórico-prácticos con un valor del 65 % de la

nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

Las siguientes referencias son de consulta obligatoria:

- Gutiérrez-López G, Barbosa-Cánovas G. Food Science and Food Biotechnology, editors: CRC Press; 2003.
- Ohshima T, Giri A. Fermented Foods, In: Batt CA, Tortorello ML, editors. Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press; 2014. p. 852-69.
- Tanaka T. Enzyme Applications in Food Processing: Traditional Uses to New Developments. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of Food Chemistry. Oxford: Academic Press; 2019. p. 85-95.
- Watson R, Preedy V. Production, Safety, Regulation and Public Health.
 Genetically Modified Organisms in Food. 2015. 1st Edition. Elsevier. ISBN: 9780128022597. Academic Press.

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable para aquellos estudiantes que quieran profundizar en los temas que se abordan en la asignatura.

- Batt CA. Microbiology of Fermentations. Reference Module in Food Science: Elsevier; 2016.
- Mallikarjuna N, Yellamma K. Chapter 13 Genetic and Metabolic Engineering of Microorganisms for the Production of Various Food Products. In: Buddolla V, editor. Recent Developments in Applied Microbiology and Biochemistry: Academic Press; 2019. p. 167-82.
- Mustafa MG, Khan MGM, Nguyen D, Iqbal S. Chapter 13 Techniques in Biotechnology: Essential for Industry. In: Barh D, Azevedo V, editors. Omics Technologies and Bio-Engineering: Academic Press; 2018. p. 233-49.
- Pessoa MG, Vespermann KAC, Paulino BN, Barcelos MCS, Pastore GM, Molina G. Newly isolated microorganisms with potential application in biotechnology. Biotechnology Advances. 2019; 37(2): 319-39.

- Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, et al. Applications of Microbial Enzymes in Food Industry. Food Technol Biotechnol. 2018;56(1):16-30.

WEBS DE REFERENCIA:

- www.oecd.org (OCDE) Organización para la Cooperación y el Desarrollo Económico.
- www.fao.org: Organización de las Naciones Unidas para la Agricultura y la Alimentación.

www.codexalimentarius.net. Codex Alimentarius creada por la FAO y la OMS.

OTRAS FUENTES DE CONSULTA:

-