

GUÍA DOCENTE 2023-2024

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: Matemáticas Disc			Discreta		
PLAN DE ESTUDIOS:		Grado en Ingeniería Informática			
FACULTAD:	Escuela Politécnica Superior				
CARÁCTER DE LA ASIGNATURA: Básica					
ECTS: 6					
CURSO: Primero					
SEMESTRE: Segundo					
IDIOMA EN QUE SE IMPARTE: Castell			Castellaı	าด	
PROFESORADO: Dr.		Dr. Jor	orge Crespo Álvarez		
DIRECCIÓN DE CORREO ELECTRÓNICO: jorge.crespo@uneatlantico.es					

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS: No Aplica CONTENIDOS: Tema 1. Teoría de conjuntos 1.1. Conjuntos 1.2. Operaciones con conjuntos 1.3. Leyes del álgebra de conjuntos Tema 2. Relaciones y funciones 2.1. Introducción 2.2. Relaciones binarias

- 2.3. Relaciones de orden
- 2.4. Relaciones de equivalencia
- 2.5. Funciones
- Tema 3. Combinatoria
 - 3.1. Introducción
 - 3.2. Principios básicos
 - 3.3. Permutaciones
 - 3.4. Combinaciones
 - 3.5. Variaciones
- Tema 4. Recurrencia
 - 4.1. Introducción
 - 4.2. Sucesiones y cadenas
 - 4.3. Relaciones de recurrencia
- Tema 5. Teoría de grafos
 - 5.1. Introducción
 - 5.2. Grafos. Conceptos básicos
 - 5.3. Representación matricial
 - 5.4. Isomorfismo
 - 5.5. Caminos., ciclos y conexidad
 - 5.6. Grafos eulerianos y hamiltonianos
 - 5.7. Grafos distinguidos o especiales
- Tema 6. Árboles
 - 6.1. Introducción
 - 6.2. Conceptos básicos
 - 6.3. Tipos de árboles
 - 6.4. Recorrido en árboles
 - 6.5. Isomorfismo en árboles
- Tema 7. Autómatas
 - 7.1. Introducción
 - 7.2. Conceptos básicos (lenguajes, gramáticas y autómatas)
 - 7.3. Autómatas finitos
 - 7.4. Máquina de Turing

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG8 Capacidad de explicar y aplicar las materias básicas y tecnologías, que permitan el aprendizaje y desarrollo de nuevos métodos y tecnologías, así como las que les doten de una gran versatilidad para adaptarse a nuevas situaciones.
- CG9 Capacidad para resolver problemas con iniciativa, toma de decisiones, autonomía y creatividad. Capacidad para saber comunicar y transmitir los conocimientos, habilidades y destrezas de la profesión de Ingeniero Técnico en Informática.
- CG10 Capacidad para conocer, comprender y ser capaz de realizar mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planificación de tareas y otros trabajos análogos de informática.

COMPETENCIAS ESPECÍFICAS:

Que los estudiantes sean capaces de:

 CEO3 Capacidad de aplicar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para la resolución de problemas propios de la ingeniería

RESULTADOS DE APRENDIZAJE:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje:

- Conocer los principios de la teoría de conjuntos, la rama de combinatoria y sucesiones.
- Saber establecer relaciones de recurrencia
- Conocer los principios de los grafos
- Conocer los distintos tipos de árboles y sus relaciones
- Comprender el funcionamiento de un autómata finito

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- MD1 Método expositivo
- MD3 Resolución de ejercicios
- MD4 Aprendizaje basado en problemas
- MD7 Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

Actividades formativas		
	Clases expositivas	12
Actividades dirigidas	Clases prácticas	18
	Seminarios y Talleres	7.5
Actividades	Supervisión de actividades	7.5
supervisadas	Tutorías (individual / en grupo)	7.5
	Preparación de clases	15
	Estudio personal y lecturas	45
Actividades	Elaboración de trabajos	15
autónomas	Trabajo individual en campus virtual	15

El primer día de clase, el profesor/a proporcionará información más detallada al respecto.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Ponderación	
Evaluación	Entregas de Talleres	10 %
continua	2 Exámenes Parciales	20 %
Evaluación	Examen Teórico-Práctico	70 %
final		

La calificación del instrumento de la evaluación final (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) **no podrá ser inferior, en ningún caso, a**

4,0 puntos (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de un Examen Teórico-Práctico con un valor de hasta el 70% de la nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

Las siguientes referencias son de consulta obligatoria:

Brena, R. (2003) *Autómatas y lenguajes. Un enfoque de diseño*. Universidad Técnica de Moterrey. México.

Diccionario ilustrado Océano de la Lengua Española (2001). (ed. Milenio). Barcelona: OCEANO

Formella, A. (2010). Teoría de Autómatas y Lenguajes Formales. Universidad de Vigo. España.

Hortalá González, M.T.; Leach Albert, J.; & Rodríguez Artalejo, M. (2001). Matemática discreta y lógica matemática (2da ed.). España: Complutense.

Johnsonbaugh, R. (2005). Matemáticas Discretas (6ta ed.). México: Pearson Educación.

Tocci, R.J.; Widmer, N. S. (2003). *Sistemas digitales: principios y aplicaciones*. (8va ed.). México: Pearson Educación.

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable para aquellos estudiantes que quieran profundizar en los temas que se abordan en la asignatura.

Rosen, K.H. (2012). *Discrete Mathematics and Its Applications* (7ma ed.). New York: McGraw-Hill.

WEBS DE REFERENCIA:

OTRAS FUENTES DE CONSULTA:

No Aplica