

GUÍA DOCENTE 2023-2024

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: Estru		Estruc	cturas de datos y algoritmos l						
PLAN DE ESTUDIOS:			Grado en Ingeniería de Organización Industrial						
FACULTAD: Escuela Polité			Politécn	nica Superior					
CARÁCTER DE LA ASIGNATURA:				Opta	ntiva				
ECTS:	6								
CURSO:	Cuar	Cuarto							
SEMESTRE: Primero			ı						
IDIOMA EN QUE SE IMPARTE:			RTE:	Español					
PROFESORADO: Mar			Manu	uel Masias Vergara					
DIRECCIÓN DE CORREO ELECTRÓ				ÓNICO:	manuel.masias@uneatlantico.es				

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

No aplica

CONTENIDOS:

- Introducción a la asignatura
- Tema 1. Estructuras de datos fundamentales
 - 1.1 Datos Primitivos
 - 1.2 Datos estructurados (Vectores, registros , conjuntos)
- Tema 2. Listas enlazadas
 - 2.1 Definición y diseño
 - 2.2 Implementación
 - 2.3 Caso práctico
- Tema 3. Pilas (Stack)
 - 3.1 Definición y diseño

- 3.2 Implementación
- 3.3 Caso práctico
- Tema 4. Colas (Queue)
 - 4.1 Definición y diseño
 - 4.2 Implementación
 - 4.3 Caso práctico
- Tema 5. Árboles
 - 3.1 Definición y diseño
 - 3.2 Implementación árbol binario
 - 3.3 Caso práctico
- Tema 6. Grafos
 - 6.1 Definición y diseño
 - 6.2 Algoritmo de Dijkstra
- Tema 7. Ficheros
 - 7.1 Definición
 - 7.2 Tipos de ficheros
 - 7.3 Operaciones con ficheros
 - 7.4 Implementación
 - 7.5 Caso práctico
- Tema 8. Proyecto

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG1 Analizar resultados y sintetizar información en un contexto teórico y/o experimental relacionado con la ingeniería de la organización industrial
- CG2 Organizar y planificar de forma adecuada tareas en el ámbito de la ingeniería de la organización industrial
- CG3 Comunicar de manera adecuada y eficaz en lengua nativa, tanto de forma oral como escrita, ideas y resultados relacionados con la ingeniería de la organización industrial a audiencias formadas por público especializado y/o no especializado
- CG4 Analizar y buscar información en diversas fuentes sobre temas de la ingeniería de la organización industrial
- CG5 Resolver problemas relativos a la ingeniería de la organización industrial
- CG8 Ejercer la crítica y la autocrítica con fundamentos sólidos, teniendo en cuenta la diversidad y complejidad de las personas y de los procesos en el ámbito de la ingeniería de la organización industrial

CG10 Aprender de forma autónoma conceptos relacionados en el ámbito de la ingeniería de la organización industrial

CG12 Relacionar de forma creativa principios, conceptos y resultados en el ámbito de la ingeniería de la organización industrial

COMPETENCIAS PROPIAS DE LA ASIGNATURA:

Que los estudiantes sean capaces de:

CEOP19 - Capacidad para el aprendizaje de un lenguaje de programación de propósito general y de los métodos para el manejo de las principales estructuras de datos

CEOP20 - Conocimiento, diseño y utilización de forma eficiente de los tipos y estructuras de datos más adecuados a la resolución de un problema

RESULTADOS DE APRENDIZAJE:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje:

- Utilizar y definir estructuras de datos eficientes y adecuadas a cada problema.
- Explicar el papel que desempeñan los algoritmos y las estructuras de datos.
- Implementar los algoritmos y las estructuras de datos en el software.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- MD1 Método expositivo
- MD2 Estudio y análisis de casos
- MD3 Resolución de ejercicios
- MD4 Aprendizaje basado en problemas
- MD6 Aprendizaje cooperativo/trabajo en grupo
- MD7 Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

	Horas	
Actividados	Clases expositivas	12
Actividades dirigidas	Clases prácticas	15
uirigiuas	Seminarios y talleres	12
Actividades	Supervisión de actividades	7,5
supervisadas	Tutorías (individual / en grupo)	6
	Preparación de clases	15
Actividades autónomas	Estudio personal y lecturas	37,5
	Elaboración de trabajos	22,5
	Trabajo en campus virtual	15
Actividades de evaluación	Actividades de evaluación	7,5

El primer día de clase, el profesor/a proporcionará información más detallada al respecto.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Ponderación	
	Actividades de evaluación continua y formativa	15%
Evaluación	Prueba parcial de evaluación continua y formativa	15%
continua	Proyecto final	15%
	Interés y participación del alumno en la asignatura	5%
Evaluación final	Prueba teórico-práctica final	50%

La calificación del instrumento de la evaluación final (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) no podrá ser inferior, en ningún caso, a 4,0 puntos (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de un Examen Teórico-Práctico con un valor del 50 % de la nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

Las siguientes referencias son de consulta obligatoria:

- Cormen, T. y Leiserson, C. (2009) Introduction to Algorithms 3rd edición. Ed. The Mit Press
- Karumanchi, N. (2020) Data Structures and Algorithms Made Easy in Java: Data Structure and Algorithmic Puzzles. CareerMonk Publications.

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable para aquellos estudiantes que quieran profundizar en los temas que se abordan en la asignatura.

- Serbat, A (2016) Fundamentos de Programación con Java Ed. Springer
- Sedgewick R. Algorithms, 4th Edition Ed. Pearson

١	N	FI	R	9	ח	F	R	F	F	FΙ	R	FI	N	CI	Δ	٠
М	/ V	ш	_	.	u	_	г	_		_	◂	_	IN	v	М	١.

No aplica

OTRAS FUENTES DE CONSULTA:

No aplica