

GUÍA DOCENTE 2023-2024

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA:			TIÓN AVANZADA DE LOS RESIDUOS SÓLIDOS EN LA STRIA		
			MÁSTER UNIVERSITARIO EN GESTIÓN INTEGRADA: PREVENCIÓN, MEDIO AMBIENTE Y CALIDAD		
MATERIA:		MEDIO AMBIENTE			
FACULTAE): E	ESCUELA POLITÉCNICA SUPERIOR			
CARÁCTER DE ASIGNATURA:			L	OBLIGATORIA	
ECTS:	3				
CURSO:	PRI	PRIMERO			
SEMESTRE: PRIMERO					
IDIOMA EN QUE IMPARTE:		SE	CASTELLANO		
PROFESORADO:		Dr. Eduardo García Villena			
DIRECCIÓN DE ELECTRÓNICO:		CORREO		eduardo.garcia@uneatlantico.es	

DATOS ESPECÍFICOS DE LA ASIGNATURA

1.3 Tipos de residuos sólidos

REQUISITOS PREVIOS: No aplica CONTENIDOS: -Tema 1. La gestión integral de los residuos sólidos 1.1 Introducción 1.2 Concepto de residuo y subproducto

- 1.4 Gestión de los residuos
- 1.5 Estrategias de la Unión Europea sobre la gestión de residuos
- -Tema 2. Los Residuos Sólidos Urbanos (RSU)
 - 2.1. Introducción
 - 2.2. Producción de residuos sólidos urbanos
 - 2.3. Caracterización de los residuos sólidos urbanos
 - 2.4. Tratamiento integral de los residuos sólidos urbanos
 - 2.5. Gestión de los residuos sólidos urbanos tóxicos y peligrosos
 - 2.6. Tendencias de futuro en la gestión de los residuos sólidos urbanos
- -Tema 3. Los residuos industriales
 - 3.1. Introducción
 - 3.2 Gestión de los residuos industriales
 - 3.3. Caracterización de los residuos industriales
 - 3.4. Clasificación de los residuos industriales
 - 3.5. Alternativas para la gestión de los residuos industriales
 - 3.6. Reciclaje de los residuos industriales: vitrificación
 - 3.7. Los envases y los residuos de envases
 - 3.8. Tendencias en la gestión de los residuos industriales
- -Tema 4. Valorización de residuos químicos
 - 4.1. Introducción
 - 4.2. Marco histórico
 - 4.3. La ecología industrial
 - 4.4. Origen de los residuos químicos
 - 4.5. Métodos de valorización
 - 4.6. Estudio de viabilidad de la valorización
 - 4.7. Conclusiones

COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

COMPETENCIAS BÁSICAS:

- CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

COMPETENCIAS GENERALES:

Instrumentales:

- CG1. Analizar y sintetizar información sobre temas relacionados con la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.
- CG2. Comunicar de forma idónea a través del medio oral y escrito en lengua nativa y lenguaje técnico propio de la disciplina de gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.
- CG3: Tomar decisiones ante situaciones que puedan plantearse en el ámbito de la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.
- CG4. Aplicar las tecnologías de la información y comunicación relativas a la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.

Personales:

- CG5. Trabajar en equipo y colaborar de forma efectiva en el cumplimiento y solución de tareas relacionadas con la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.
- CG6: Trabajar en un contexto internacional e interdisciplinar en el ámbito de la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.
- CG7. Asumir la responsabilidad y el compromiso ético en el ámbito de las actividades relativas a la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.

Sistémicas:

- CG8. Aprender de forma autónoma la gestión y aprendizaje de la aplicación de herramientas comprendidas en el marco de la disciplina de la gestión integrada de la prevención de riesgos laborales, medio ambiente y de la calidad de los productos y/o servicios.
- CG9. Resolver problemas de forma creativa e innovadora en el ámbito de la gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.
- CG10. Realizar funciones de liderazgo en diferentes escenarios y situaciones relacionados con la disciplina de gestión integrada de la prevención de riesgos laborales, medio ambiente y calidad.

COMPETENCIAS ESPECÍFICAS:

CEO2: Evaluar posibles vías de valorización de los residuos químicos e industriales en general, con énfasis en aquellos destinados a la fabricación de materiales ligeros y densos para la construcción, en función de su viabilidad ambiental, técnica y económica.

RESULTADOS DE APRENDIZAJE:

Al finalizar la asignatura, el estudiante tendrá conocimiento de:

- La importancia de la minimización como herramienta preventiva en la gestión, y en la incorporación de tecnologías limpias y adopción de buenas prácticas en las actividades industriales.
- La aplicabilidad del reciclaje de residuos industriales y de otras técnicas de valorización material en el sector de la construcción.
- Los tipos de residuos industriales destinados a la fabricación de materiales ligeros y densos para la construcción.
- Las aplicaciones de la tecnología de la vitrificación en la inertización de los residuos tóxicos y peligrosos.
- El origen de los residuos químicos, estudiando las posibles vías de valorización de este tipo de subproducto.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método expositivo
- Resolución de ejercicios
- Aprendizaje basado en problemas

- Aprendizaje cooperativo/trabajo en grupo
- Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno llevará a cabo las siguientes actividades formativas:

	Horas	
Actividades	Actividades de foro	11,25
supervisadas	Realización y corrección de ejercicios	2,25
	Tutorías (individual / en grupo)	6
	Sesiones expositivas virtuales	6
	Preparación de las actividades de foro	11,25
Actividades Estudio personal y lecturas		18,75
autónomas	utónomas Elaboración de trabajos / tareas en grupo	
	Elaboración de trabajos / tareas de forma individual	11,25
	Realización de actividades de autoevaluación	2,25
Actividades	Actividades de evaluación	2,25
de		
evaluación		

El día de inicio del período lectivo de la asignatura, el profesor proporciona información detallada al respecto para que el alumno pueda organizarse.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Examen final	60%
Resolución de un caso práctico	25%
Actividad de debate	15%

Para más información, consúltese aquí.

CONVOCATORIA EXTRAORDINARIA:

En la convocatoria extraordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Calificación obtenida en la actividad de debate de la convocatoria ordinaria	15%
Elaboración de un trabajo individual	15%
Examen final	70%

Para más información, consúltese aquí.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

- [1]. Arumugam, V., Ismail, M. H., Puspadaran, T. A., Routray, W., Ngadisih, N., Karyadi, J. N. W., Suwignyo, B., & Suryatmojo, H. (2022). Food Waste Treatment Methods and its Effects on the Growth Quality of Plants: A Review. *Pertanika Journal of Tropical Agricultural Science*, 45(1), 75–101. https://doi.org/10.47836/pjtas.45.1.05
- [2]. Calderón-Márquez, A. J. (2023). Biogas utilization from municipal solid waste in developing countries towards the transition to sustainable development The Colombian case. *Dyna*, 90(227), 147–156. https://doi.org/10.15446/dyna.v90n227.107131
- [3]. Fararah, E., Nasr, E. A., & Mahmoud, H. A. (2023). Multi-Objective Optimization Modeling of Integrated Supply Chain for Solid Waste Treatment. *International Journal of Industrial Engineering*, 30(1), 147–165. https://doi.org/10.23055/ijietap.2023.30.1.8647
- [4]. Gomes de Castilho, M. E., Novaes da Fraga, F., de Souza Siqueira Pereira, C., Barreto De Rangel Moreira Cavalcanti, I. R., & Pereira Ribeiro, S. (2023). Possibilidades De Recuperação De Energia Para a Melhoria Da Gestão De Resíduos Sólidos Municipais. *Periódico Tchê Química, 20*(44), 61–70. https://doi.org/10.52571/PTQ.v20.n44.2023_05_CASTILHO_pgs_61_70.pdf

- [5]. Marković, M., Popović, Z., & Marjanović, I. (2023). Towards a Circular Economy: Evaluation of Waste Management Performance in European Union Countries. Serbian Journal of Management, 18(1), 45–57. https://doi.org/10.5937/sjm18-40073
- [6]. Mateus, M. M., Cecílio, D., Fernandes, M. C., & Neiva Correia, M. J. (2023). Refuse derived fuels as an immediate strategy for the energy transition, circular economy, and sustainability. *Business Strategy & the Environment (John Wiley & Sons, Inc)*, 32(6), 3915–3926. https://doi.org/10.1002/bse.3345
- [7]. Neves dos Santos, M. D., Cristina de Andrade, R., Salles Vernin, N., & Torres Netto, A. (2022). Análise do Ciclo de Vida na Gestão de Resíduo Sólidos Urbanos: Uma Revisão Bibliográfica. *Revista Internacional de Ciências, 12*(2), 126–140. https://doi.org/10.12957/ric.2022.64930
- [8]. Prajapati, R., Kohli, K., Maity, S. K., & Sharma, B. K. (2021). Potential Chemicals from Plastic Wastes. *Molecules*, 26(11), 3175. https://doi.org/10.3390/molecules26113175

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable. Están ordenadas alfabéticamente:

- [1]. Narváez-Legarda, A., Mosquera-Idrobo, M. F., & Torres-Agredo, J. (2020). Evaluación de las características de un residuo de la industria del vidrio para encapsular materiales peligrosos. *UIS Ingenierías*, 19(2), 43–50. https://doi.org/10.18273/revuin.v19n2-2020005
- [2]. Algamal, Y., Khalil, N. M., & Saleem, Q. M. (2018). Usage of the sludge from water treatment plant in brick-making industry. *Journal Of Chemical Technology & Metallurgy*, 53(3), 504-510.
- [3]. Araujo Rivas, V., Osswald, T., & Virginia Candal, M. (2017). Micropeletización de PEAD para la fabricación de películas porosas y piezas plásticas. *La revista latinoamericana de metalurgia y materiales, RLMM*, S742-44.
- [4]. De León, D., Hernández, A., & Marzoa, S. (2020). Diseño de planta y equipo para la revalorización de residuos sólidos. *Memoria Investigaciones En Ingeniería*, 18, 25–33. https://doi.org/10.36561/ING.18.5
- [5]. Elías, X., Bordas, S. (2017). La vitrificación de los residuos. Una tecnología de futuro. Suez Spain, S.L.
- [6]. Elías, X. (2009). Reciclaje de residuos industriales. Ediciones Díaz de Santos. España.
- [7]. Iaquaniello, G., Centi, G., Salladini, A., Palo, E., & Perathoner, S. (2018). Waste to Chemicals for a Circular Economy. *Chemistry A European Journal*, 24(46), 11831–11839. https://doi.org/10.1002/chem.201802903

- [8]. Jiménez-Roberto, Y., Sebastián-Sarmiento, J., Gómez-Cabrera, A., & Leal-del Castillo, G. (2017). Analysis of the environmental sustainability of buildings using BIM (Building Information Modeling) methodology. *Ingeniería y Competitividad*, 19(1), 230-240.
- [9]. Montoya Quesada, E., Villaquirán-Caicedo, M. A., & Mejía de Gutiérrez, R. (2020). Materiales vitrocerámicos obtenidos a partir de residuos sólidos tales como cenizas, escorias y vidrio: revisión. *Informador Técnico*, 84(2), 68–89. https://doi.org/10.23850/22565035.2900
- [10]. Schley, L. (2018). Vitrification. *Discover*, 39(10), 14. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13219374 3&lang=es&site=ehost-live
- [11]. Tchobanoglous, G. & Burton, F. (1991). Wastewater engineering treatment, disposal and reuse. Mc. Graw Hill.
- [12]. Yung-Tse Hung, Aziz, H. A., Syed Zainal, S. F. F., Yu-Li Yeh, R., Lian-Huey Liu, Paul, H. H., & Huhnke, C. R. (2018). *Chemical Waste and Allied Products. Water Environment Research (10614303), 90*(10), 1021–1032. https://doi.org/10.2175/106143018X15289915807137

OTRAS FUENTES DE CONSULTA:

- Base de datos EBSCO - Acceso a través del campus virtual.