

GUÍA DOCENTE 2025-2026

DATOS GENERALES DE LA ASIGNATURA

ASIGNAT	TURA: GESTIÓN DE LA CONTAMINACIÓN ATMOSFÉRICA					
PLAN DE ESTUDIOS:			MÁSTER UNIVERSITARIO EN GESTIÓN INTEGRADA: PREVENCIÓN, MEDIO AMBIENTE Y CALIDAD			
MATERIA:			MEDIO AMBIENTE			
FACULTAD: CENT		RO DE POSGRADO				
CARÁCTER DE ASIGNATURA:		DE	L	. A OBI	LIGATORIA	
ECTS:	3	3				
CURSO:	PRIMERO					
SEMESTRE: PRIMERO						
IDIOMA EN QUE IMPARTE:		SE	CASTELLANO			
PROFESORADO:		Mtr. Erik Simoes				
DIRECCIÓN DE ELECTRÓNICO:			CORREO		erik.simoes@uneatlantico.es	

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

No aplica

CONTENIDOS:

-Tema 1. Fundamentos de la contaminación atmosférica

Subtema 1.1. La atmósfera

Subtema 1.2. Conceptos básicos sobre contaminación atmosférica

Subtema 1.3. Efecto de los contaminantes atmosféricos

-Tema 2. Fuentes y procesos contaminantes

Subtema 2.1. Introducción

Subtema 2.2. Las fuentes contaminantes

Subtema 2.3 Procesos contaminantes

-Tema 3. Control de la contaminación atmosférica

Subtema 3.1. Introducción

Subtema 3.2. Sistemas de depuración de efluentes atmosféricos contaminados

Subtema 3.3. Captura de los contaminantes atmosféricos

RESULTADOS DE APRENDIZAJE

RESULTADOS DE APRENDIZAJE:

RAK2: Diferenciar los procedimientos de control, seguimiento y análisis de contaminantes gaseosos y particulados en el marco de la legislación vigente, y explicar los factores de emisión y climáticos que condicionan su dispersión en la atmósfera mediante modelos matemáticos.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método expositivo
- Resolución de ejercicios
- Aprendizaje basado en problemas
- Aprendizaje cooperativo/trabajo en grupo
- Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno llevará a cabo las siguientes actividades formativas:

	Horas	
Actividades Actividades de foro		11.25
supervisadas	Realización y corrección de ejercicios	2.25
	Tutorías (individual / en grupo)	6

	Sesiones expositivas virtuales	6
Actividades	Preparación de las actividades de foro	11.25
autónomas	Estudio personal y lecturas	18.75
	Elaboración de trabajos/ tareas en grupo	3.75
	Elaboración de trabajos / tareas de forma	11.25
	individual	
	Realización de actividades de	
	autoevaluación	2.25
Actividades de	Actividades de evaluación	
evaluación		2.25

El día de inicio del período lectivo de la asignatura, el profesor proporciona información detallada al respecto para que el alumno pueda organizarse.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Examen Final	60%
Resolución de un caso práctico	25%
Actividad de debate	15%

Para más información, consúltese aquí.

CONVOCATORIA EXTRAORDINARIA:

En la convocatoria extraordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Calificación obtenida en la actividad de debate de la convocatoria ordinaria	15%
Elaboración de un trabajo individual	15%
Examen Final	70%

Para más información, consúltese aquí.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

- [1]. Fuentealba-Cruz, M. I., Quirós-López, D. I., Marchant-Fuentes, C. I., & Ariza-Bareño, Y. (2024). Intervención didáctica para la enseñanza de contaminación atmosférica por material particulado. *Formación Universitaria*, 17(4), 163–173. https://doi.org/10.4067/S0718-50062024000400163
- [2]. Martínez Burgos, W. J., Lima Serra, J., Parody Muñoz, A., Wedderhoff Herrmann, L., Gallego-Cartagena, E., Paternina-Arboleda, C. D., Thomaz Soccol, V., Santiago Martínez, V. J., & Ricardo Soccol, C. (2023). Analysis on Air Pollution in South America during the Propagation of COVID-19. *Revista Técnica de La Facultad de Ingeniería de La Universidad Del Zulia*, 46, 1–13. https://doi.org/10.22209/rt.v46a12
- [3]. Murillo Villamizar, A. A., Rodríguez Castilla, J. L., & Bush Felipe, U. A. (2023). Dispersión de contaminantes criterios emitidos por fuentes móviles en tres vías principales de una ciudad intermedia de Colombia. *Revista EIA*, 20(40), 1–24. https://doi.org/10.24050/reia.v20i40.1696
- [4]. Rincón-Rueda, G. A., & Murad-Pedraza, J. A. (2023). Análisis estadístico de los efectos de la cuarentena por COVID 19 en la calidad del aire de Bogotá y 20 ciudades del mundo (enero a julio de 2020). *Revista EIA*, 20(40), 1–33. https://doi.org/10.24050/reia.v20i40.1701
- [5]. Sierra, Y., & Bermeo, J. F. (2022). Emisiones de Gases de Efecto Invernadero en las Instituciones de Educación Superior. *Producción Más Limpia, 17*(1), 169–186. https://doi.org/10.22507/10.22507/pml.v17n1a10
- [6]. Xu, Y., Dong, B., Su, X., & Zhu, Z. (2021). The paths of prevention and treatment on air pollution and simulation analysis: a case study. *Energy Sources Part A: Recovery, Utilization & Environmental Effects*, 1–15. https://doi.org/10.1080/15567036.2021.1966136
- [7]. Yepes Palacio, D. L., & Trejos Rendón, G. A. (2023). Planes de calidad del aire en lugares con episodios críticos de contaminación atmosférica: un comparativo. *Teuken Bidikay: Revista Latinoamericana de Investigación En*

Organizaciones, Ambiente y Sociedad, 14(22), 1–18. https://doi.org/10.33571/teuken.v14n22a3

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable. Están ordenadas alfabéticamente:

- [1]. Andrés Vidal-Daza, O., & Pérez-Vidal, A. (2018). Estimación de la dispersión de contaminantes atmosféricos emitidos por una industria papelera mediante el modelo AERMOD. *Ingeniería* (0121-750X), 23(1), 31–47. https://doi.org/10.14483/23448393.1226
- [2]. Dimitrijević, D., Živković, P., Branković, J., Dobrnjac, M., & Stevanović, Ž. (2018). Air Pollution Removal and Control by Green Living Roof Systems. *Acta Technica Corviniensis Bulletin of Engineering*, 11(1), 47–50.
- [3]. Gothai, E., Natesan, P., Rajalaxmi, R. R., Sakti, S., Sasi, S., & Soundararajan, P. (2021). Air Pollution and Temperature in the Prediction of Covid-19. Turkish Online *Journal of Qualitative Inquiry*, *12*(3), 3939–3953.
- [4]. Gvero, P., Radić, R., Kotur, M., & Kardaš, D. (2018). Urban air pollution caused by the emission of PM10 from the small household devices and abatement measures. *Thermal science*, 22(6), 2325–2333. https://doi.org/10.2298/TSCI180119152G
- [5]. Konkle, M., & Griffin, J. (2019). Controlling NOx emissions: Industrial processes produce NOx as a byproduct of processing and combustion. Several control and abatement technologies offer facilities solutions to control emissions. *Process Heating*, 26(2), 16–19. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=13421186 9&lang=es&site=ehost-live
- [6]. Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. *Science*, 369(6504), 702–706. https://doi.org/10.1126/science.abb7431
- [7]. Riojas-Rodríguez, H., Soares Da Silva, A., Texcalac-Sangrador, J. L., & Moreno-Banda, G. L. (2016). Air pollution management and control in Latin America and the Caribbean: implications for climate change. *Pan American Journal Of Public Health*, 40(3), 150-159.
- [8]. Xu, Y., Dong, B., Su, X., & Zhu, Z. (2021). The paths of prevention and treatment on air pollution and simulation analysis: a case study. Energy Sources Part A:

Recovery, Utilization & Environmental Effects, 1–15. https://doi.org/10.1080/15567036.2021.1966136

OTRAS FUENTES DE CONSULTA:

- Base de datos EBSCO - Acceso a través del campus virtual.