

GUÍA DOCENTE 2025-2026

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: RESID		DUOS SÓLIDOS URBANOS E INDUSTRIALES				
PLAN DE ESTUDIOS:			MÁSTER UNIVERSITARIO EN INGENIERÍA AMBIENTAL			
FACULTAD: CENTR		O DE POSGRADO				
CARÁCTER ASIGNATURA:		DE	L	- A OBI	LIGATORIA	
ECTS:	5					
CURSO:	URSO: PRIMERO					
SEMESTRE: PRIMERO						
IDIOMA EN QUE IMPARTE:		SE	CASTELLANO			
PROFESORADO:		Dra. Alina Pascual Barrera				
DIRECCIÓN DE ELECTRÓNICO:		CORREO		alina.pascual@uneatlantico.es		

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

No aplica

CONTENIDOS:

- Tema 1. Producción y composición de los residuos sólidos urbanos
 - 1.1. Introducción
 - 1.2. Producción de residuos sólidos urbanos
 - 1.3. Composición de los residuos sólidos urbanos
- Tema 2. La recogida selectiva

- 2.1. Introducción
- 2.2. Tipos de recogida selectiva
- 2.3. Recogida de la fracción fermentable
- 2.4. Recogida de papel y cartón, metal, plástico, tetrabrik y vidrio
- 2.5. Recogida de resto de residuos domésticos
- 2.6. Los centros de recogida o puntos verdes
- Tema 3. Valorización material de los RSU: el compostaje
 - 3.1. Introducción
 - 3.2. Definición del proceso de compostaje y tipos
 - 3.3. Etapas del proceso de compostaje
 - 3.4. Parámetros físicos, químicos y biológicos intervinientes
 - 3.5. Procesamiento del compost y dimensionamiento de una planta de compostaje
 - 3.6. Tecnologías del compostaje
 - 3.7. Sistemas de compostaje abierto, cerrado y semicerrado
 - 3.8. Ventajas e inconvenientes del proceso de compostaje
 - 3.9. Caso ejemplo: sistema de compostaje en pilas dinámicas
- Tema 4. El vertido en depósito controlado
 - 4.1. Introducción
 - 4.2. Tipos de vertederos
 - 4.3. Localización del terreno y preparación del vaso de vertido
 - 4.5. Sistema de explotación y métodos de vertido
 - 4.6. Disposición del residuo
 - 4.7. Referentes legislativos
 - 4.8. Condicionantes ambientales y requisitos técnicos
 - 4.9. Gestión de lixiviados y biogás de vertedero
 - 4.10. Criterios de explotación y sellado
 - 4.11. Post-clausura del depósito
 - 4.12. Aceptación social de la instalación
 - 4.13. Programa de seguridad e higiene
 - 4.14. Orientaciones económicas
- Tema 5. Los residuos industriales
 - 5.1. Introducción
 - 5.2. Gestión de los residuos industriales
 - 5.3. Alternativas para la gestión de los residuos industriales

- 5.4. Caracterización y clasificación de los residuos industriales
- 5.5. Los envases y los residuos de envases
- Tema 6. Tratamiento fisicoquímico de los residuos industriales
 - 6.1. Introducción
 - 6.2. Procesos físicos de separación mecánica, electrodiálisis, separación térmica y por disolución
 - 6.3. Procesos químicos
- Tema 7. Tratamiento biológico de los residuos industriales
 - 7.1. Introducción
 - 7.2. Tratamiento convencional
 - 7.3. Biorecuperación in situ
 - 7.4. Tratamiento en fase de lechada y en fase sólida
 - 7.5. Avances tecnológicos
- Tema 8. Disposición del rechazo de los residuos industriales
 - 8.1. La incineración de residuos líquidos y pastosos
 - 8.2. La deposición de los residuos industriales
 - 8.3. El vertido marino

RESULTADOS DE APRENDIZAJE

RESULTADOS DE APRENDIZAJE:

RAH1: Identificar la vía de gestión más adecuada para un determinado tipo de residuo sólido urbano (RSU) o industrial (RI), según el modelo jerárquico de gestión integral de residuos impulsado por la Directiva marco de la Unión Europea

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método expositivo
- Estudio y análisis de casos
- Resolución de ejercicios
- Aprendizaje basado en problemas
- Aprendizaje cooperativo/trabajo en grupo

• Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

	Horas	
Actividades supervisadas	Actividades de foro	17,75
	Supervisión de actividades	3,75
	Tutorías (individual / en grupo)	10
	Laboratorios experimentales y visitas	1
	Sesiones expositivas virtuales	10
Actividades autónomas	Preparación de las actividades de foro	18,75
autonomas	Estudio personal y lecturas	31,25
	Elaboración de trabajos (individual/en grupo)	25
	Realización de actividades de autoevaluación	3,75
Actividades de evaluación	Examen	3,75

El día del inicio del período lectivo de la asignatura, el profesor proporciona información detallada al respecto para que el alumno pueda organizarse.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Examen final	40%
Actividades prácticas: resolución de	40%
casos, presentación de trabajos, etc,	
Actividades de debate	20%

Para más información consúltese aquí

CONVOCATORIA EXTRAORDINARIA:

En la convocatoria extraordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Actividades de debate	20%
Actividades prácticas: resolución de casos, presentación de trabajos, etc,	40%
Examen final	40%

Para más información consúltese aquí

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

- [1]. Del Río Osorio, L. L., & David Grande-Tovar, C. (2021). Valorización de residuos industriales en la producción de almidón de yuca. *Prospectiva (1692-8261),* 19(2), 1–19. https://doi.org/10.15665/rp.v19i2.2556
- [2]. Fărcean, I., Proștean, G., Ardelean, E., & Socalici, A. (2023). Management and Characterisation of Industrial Waste Containing Iron. *Acta Technica Corviniensis Bulletin of Engineering*, 16(3), 51–56.
- [3]. Grehisy Aguirre-Illatopa, J., Florida-Rofner, N., Anthony Ríos-Velasquez, E., & Dolores Lévano-Crisóstomo, J. (2024). Producción y caracterización de

- compost derivado de residuos sólidos orgánicos urbanos. *Revista U.D.C.A Actualidad & Divulgación Científica*, 27(1), 1–9. https://doi.org/10.31910/rudca.v27.n1.2024.2432
- [4]. Javier Schamber, P., & Pablo Tagliafico, J. (2021). El Sistema de Recolección Diferenciada en el territorio de la Ciudad Autónoma de Buenos Aires: Características inéditas de la participación de cartoneros en la gestión de los residuos urbanos secos. *Laboreal*, 17(2), 1–25. https://doi.org/10.4000/laboreal.18660
- [5]. Lamri, N., Belayadi, A., & Abbas, F. (2022). Solid waste management as an urban area regulation in Algeria. Case of El-Khroub city. Forum Geografic, 21(2), 158–171.
 - https://doi.org/10.5775/fg.2022.039.d
- [6]. Monique Medeiros, Á., Vieira Cabral, F., & Oliveira Lima, L. (2023). Sistemas De Proteção Ambiental Em Aterros Sanitários. *Revista Foco (Interdisciplinary Studies Journal)*, 16(11), 1–21. https://doi.org/10.54751/revistafoco.v16n11-210
- [7]. Parra-Orobio, B. A., Soto-Paz, J., & Oviedo-Ocaña, E. R. (2024). Advances in research on the improvement of green waste composting in developing countries: experiences from Colombia. *Ingeniería y Competitividad*, 26(1), 1–18. https://doi.org/10.25100/iyc.v26i1.13143
- [8]. Ramírez-Ríos, L. F., Becerra-Moreno, D., & Yamile Ortega-Contreras, J. (2024). Potential use of methane gas from the Villavicencio sanitary landfill, Colombia. *Ingeniería y Competitividad*, 26(2), 1–18. https://doi.org/10.25100/iyc.v26i2.14019
- [9]. Trinca, A., Segneri, V., Mpouras, T., Libardi, N., & Vilardi, G. (2022). Recovery of Solid Waste in Industrial and Environmental Processes. *Energies* (19961073), 15(19), 7418. https://doi.org/10.3390/en15197418

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable. Están ordenadas alfabéticamente:

- [1]. Adeleke, O. J., & Ali, M. M. (2021). An efficient model for locating solid waste collection sites in urban residential areas. *International Journal of Production Research*, 59(3), 798–812. https://doi.org/10.1080/00207543.2019.1709670
- [2]. Alfonso González, A. (2018). Materiales de construcción con residuos industriales de vertederos ecológicamente invasivos. *Arquitectura y Urbanismo*, 39(1), 5–26. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=12820225 O&lang=es&site=ehost-live
- [3]. Ávila, D., Suárez, B., Astudillo, S., Caicedo, C., & Ávila, Y. (2018). Materiales

compuestos residuales con aplicaciones en la industria de la construcción. Informador Técnico, (Suplemento 1), 18–21. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134 http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13401134

- [4]. Delgado Ramos, G. C. (2016). Residuos sólidos municipales, minería urbana y cambio climático. Cotidiano Revista de La Realidad Mexicana, 31(195), 75–84. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=11254351 2&lang=es&site=ehost-live
- [5]. Dupuy-Parra, J. R., Utria-Mendoza, I., Videau-Aguilar, M., Lesme-Jaén, R., Almareles-Arceo, Á., Fernández-Justiz, R., & Guerra-Maldonado, G. (2022). Estimación del potencial energético de los residuos industriales en el aserrío Cayogüin de Baracoa, Cuba. *Ciencia en su PC, 1,* 116–128.
- [6]. Elías, X. (2009). Reciclaje de residuos industriales. España: Díaz de Santos.
- [7]. Hernández-Nazario, L., Benítez-Fonseca, M., & Bermúdez-Torres, J. M. (2018). Caracterización físico-química de la fracción orgánica de residuos sólidos urbanos del vertedero controlado en el Centro Urbano Abel Santamaría de Santiago de Cuba. *Tecnología Química*, 38(2), 439–450. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=130162107 7&lang=es&site=ehost-live
- [8]. López-Vega, M. E., Ramírez-González, S., & Santos-Herrero, R. (2021). Predicción de la generación de lixiviados en rellenos sanitarios de Residuos Sólidos Urbanos en la ciudad de Santa Clara ,Cuba. *Tecnología Química*, 41(1), 47–59.
- [9]. Montenegro Orozco, K. T., Rojas Carpio, A. S., Cabeza Rojas, I., & Hernández Pardo, M. A. (2016). Potencial de biogás de los residuos agroindustriales generados en el departamento de Cundinamarca. *Revista ION, 29*(2), 23–36. https://doi.org/10.18273/revion.v29n2-2016002

WEBS DE REFERENCIA:

OTRAS FUENTES DE CONSULTA:

- Base de datos EBSCO - Acceso a través del campus virtual