

GUÍA DOCENTE 2025-2026

DATOS GENERALES DE LA ASIGNATURA

ACIT-KIATTIDA.		PRIZACIÓN MATERIAL DE SUBPRODUCTOS: IFICACIÓN Y RESIDUOS QUÍMICOS				
PLAN DE ESTUDIOS:			MÁSTER UNIVERSITARIO EN INGENIERÍA AMBIENTAL			
FACULTAD: CENTRO DE POS			O DE P	OSGRA	NDO	
CARÁCTER DE ASIGNATURA:		L	OBL	OBLIGATORIA		
ECTS:	6					
CURSO:	PRIMERO					
SEMESTRE: PRIMERO						
IDIOMA IMPARTE	\sim 1 (CASTELLAND)		LLANO			
PROFESORADO:		Dra. Alina Pascual Barrera				
DIRECCIÓN DE ELECTRÓNICO:		CORREO		alina.pascual@uneatlantico.es		

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

No aplica

CONTENIDOS:

- -Tema 1. Fabricación de materiales de construcción a partir de residuos
 - 1.1. Introducción
 - 1.2. El material cerámico
 - 1.3. Técnicas de solidificación de residuos
 - 1.4. La ceramización
 - 1.5. Contenido energético de los materiales de construcción

- 1.6. Consideraciones ambientales sobre los materiales de construcción
- -Tema 2. Residuos destinados a la fabricación de materiales ligeros I: aislamiento térmico
 - 2.1. Introducción
 - 2.2. El empleo de los residuos como aislantes térmicos
 - 2.3. Transferencia de calor por el interior de la masa cerámica
 - 2.4. El Ecobrick®
 - 2.5. Áridos expandidos para hormigones a partir de residuos
 - 2.6. Valorización de las cenizas procedentes de la cascarilla de arroz
 - 2.7. Fabricación de paredes compuestas a partir de residuos
- -Tema 3. Residuos destinados a la fabricación de materiales ligeros II: aislamiento acústico
 - 3.1. Introducción
 - 3.2. Fundamentos teóricos sobre pantallas acústicas
 - 3.3. Paneles aislantes fabricados a partir de papel
 - 3.4. Panel absorbente acústico (Ecogyps)
- -Tema 4. Residuos destinados a la fabricación de materiales densos
 - 4.1. Introducción
 - 4.2. Escorias de incineradora de RSU
 - 4.3. Lodos rojos
 - 4.4. Residuos con alto contenido en asbesto
 - 4.5. Lodos procedentes de la industria de acabado de superficies
 - 4.6. Residuos de la industria del curtido
 - 4.7. Residuos de pilas
- -Tema 5. Vitrificación: una tecnología para la valorización de residuos
 - 5.1. Introducción
 - 5.2. Definición de vidrio
 - 5.3. Constitución del vitrificado
 - 5.4. La desvitrificación
 - 5.5. Propiedades de los vitrificados a temperatura ambiente
 - 5.6. La vitrificación como tecnología industrial
 - 5.7. Aspectos energéticos de la vitrificación
 - 5.8. Limitaciones de la vitrificación
 - 5.9. Ejemplos de residuos empleados en procesos de vitrificación
 - 5.10. Otras técnicas de vitrificación
- -Tema 6. Valorización de residuos químicos
 - 6.1. Introducción
 - 6.2. Marco histórico
 - 6.3. La ecología industrial
 - 6.4. Origen de los residuos químicos
 - 6.5. Métodos de valorización
 - 6.6. Estudio de viabilidad de la valorización
 - 6.7. Conclusiones

RESULTADOS DE APRENDIZAJE

RESULTADOS DE APRENDIZAJE:

- RAC1. Valorar qué subproductos son los más adecuados para la fabricación de materiales de construcción ligeros y densos y evaluar sus implicaciones económicas y ambientales.
- RAH2: Relacionar la tecnología de la vitrificación con la inertización de residuos industriales tóxicos y peligrosos.
- RAC2. Planear una metodología para la valorización de residuos químicos, a partir de un modelo integral que reúna una serie de variables (sociales, ambientales, económicas) y definir las herramientas necesarias para su instrumentalización.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método expositivo
- Estudio y análisis de casos
- Resolución de ejercicios
- Aprendizaje basado en problemas
- Aprendizaje cooperativo/trabajo en grupo
- Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

	Horas	
Actividades supervisadas	Actividades de foro	21,3
	Supervisión de actividades	4,5
	Tutorías (individual / en grupo)	12
	Laboratorios experimentales y visitas	1,2

	Sesiones expositivas virtuales	12
Actividades autónomas	Preparación de las actividades de foro	22,5
autonomas	Estudio personal y lecturas	37,5
	Elaboración de trabajos (individual/en grupo)	30
	Realización de actividades de autoevaluación	4,5
Actividades de evaluación	Examen	4,5

El día del inicio del período lectivo de la asignatura, el profesor proporciona información detallada al respecto para que el alumno pueda organizarse.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Examen final	40%
Actividades prácticas: resolución de casos, presentación de trabajos, etc.)	40%
Actividades de debate	20%

Para más información consúltese aquí

CONVOCATORIA EXTRAORDINARIA:

En la convocatoria extraordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Actividades de debate	20%
Actividades prácticas: resolución de casos, presentación de trabajos, etc.)	40%
Examen final	40%

Para más información consúltese aquí

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

- [1]. Fugazzotto, M., Mazzoleni, P., Lancellotti, I., Camerini, R., Ferrari, P., Tiné, M. R., Centauro, I., Salvatici, T., & Barone, G. (2023). *Industrial Ceramics: From Waste to New Resources for Eco-Sustainable Building Materials. Minerals* (2075-163X), 13(6), 815. https://doi.org/10.3390/min13060815
- [2]. Kalak, T. (2023). Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. *Energies* (19961073), 16(4), 1783. https://doi.org/10.3390/en16041783
- [3]. Prajapati, R., Kohli, K., Maity, S. K., & Sharma, B. K. (2021). Potential Chemicals from Plastic Wastes. *Molecules*, 26(11), 3175. https://doi.org/10.3390/molecules26113175
- [4]. Rivera, J. F., Aguirre-Guerrero, A., Mejía de Gutiérrez, R., & Orobio, A. (2020). Estabilización química de suelos - Materiales convencionales y activados alcalinamente (revisión). *Informador Técnico*, 84(2), 43–67. https://doi.org/10.23850/22565035.2530
- [5]. Thakur, B., Aggarwal, N., & Kumar, N. (2023). Glass for high-level nuclear waste. AIP Conference Proceedings, 2735(1), 1–7. https://doi.org/10.1063/5.0141086

[6]. Zhou, X., Niu, C., Li, K., Lin, P., & Xu, K. (2024). Vitrification of lead-bismuth alloy nuclear waste into a glass waste form. *International Journal of Applied Glass Science*, 15(2), 139–147. https://doi.org/10.1111/ijag.16656

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable. Están ordenadas alfabéticamente:

- [1]. Alejandra Narváez-Legarda, M., Fernanda Mosquera-Idrobo, L., & Torres-Agredo, J. (2020). Evaluación de las características de un residuo de la industria del vidrio para encapsular materiales peligrosos. *UIS Ingenierías*, 19(2), 43–50. https://doi.org/10.18273/revuin.v19n2-2020005
- [2]. Elías, X., Bordas, S. (2017). La vitrificación de los residuos. Una tecnología de futuro. Suez Spain, S.L.
- [3]. Elías, X. (2009). Reciclaje de residuos industriales. Ediciones Díaz de Santos. España.
- [4]. Iaquaniello, G., Centi, G., Salladini, A., Palo, E., & Perathoner, S. (2018). Waste to Chemicals for a Circular Economy. *Chemistry A European Journal*, 24(46), 11831–11839. https://doi.org/10.1002/chem.201802903
- [5]. Mekonnen, T., Mussone, P., & Bressler, D. (2016). Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review. *Critical Reviews In Biotechnology*, 36(1), 120-131
- [6]. Montoya Quesada, E., Villaquirán-Caicedo, M. A., & Mejía de Gutiérrez, R. (2020). Materiales vitrocerámicos obtenidos a partir de residuos sólidos tales como cenizas, escorias y vidrio: revisión. *Informador Técnico*, 84(2), 68–89. https://doi.org/10.23850/22565035.2900
- [7]. Pliego-Bravo, Y. S., García-Reyes, M. E., Urrea-García, G. R., & Vergara-Hernández, M. (2014). Simulación del proceso termoquímico sugerido para el aprovechamiento de los lodos residuales como fuente de energía alterna. Revista Mexicana de Ingeniería Química, 13(2), 619-629.
- [8]. Schley, L. (2018). Vitrification. *Discover*, *39*(10), 14. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=13219374 3&lang=es&site=ehost-live

- [9]. Tratamiento de residuos industriales mediante tecnología de plasma. (2011). DYNA - Ingeniería e Industria, 86(1), 80-88. https://doi.org/10.6036/3851
- [10]. Tchobanoglous, G. & Burton, F. (1991). Wastewater engineering-treatment, disposal and reuse. Mc. Graw Hill.
- [11]. Yung-Tse Hung, Aziz, H. A., Syed Zainal, S. F. F., Yu-Li Yeh, R., Lian-Huey Liu, Paul, H. H., & Huhnke, C. R. (2018). *Chemical Waste and Allied Products. Water Environment Research (10614303), 90(10), 1021–1032.* https://doi.org/10.2175/106143018X15289915807137

WEBS DE REFERENCIA:

OTRAS FUENTES DE CONSULTA:

- Base de datos EBSCO - Acceso a través del campus virtual