

GUÍA DOCENTE 2025-2026

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: REUTI			ILIZACIÓN_Y_POTABILIZACION_DEL_AGUA				
PLAN DE ESTUDIOS:			MÁSTER UNIVERSITARIO EN INGENIERÍA AMBIENTAL				
FACULTA	CENTRO	DE POSGRADO					
CARÁCTER DE ASIGNATURA:		L	OBLIGATORIA				
ECTS:	4	ļ					
CURSO:	PR	PRIMERO					
SEMESTRE: PRIME			RO				
IDIOMA IMPARTE		QUE	SE	CASTE	LLANO		
PROFESORADO:			Mtr. Stephen Bonilla Bueno				
DIRECCIÓN DE ELECTRÓNICO:			C	ORREO	stephen.bonilla@uneatlantico.es		

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

No aplica.

CONTENIDOS:

- Tema 1. Reutilización de aguas residuales industriales
 - 1.1. Introducción
 - 1.2. Normativa de aplicación sobre la reutilización de aguas residuales
 - 1.3. Patógenos e indicadores biológicos de calidad de las aguas
 - 1.4. Tratamientos avanzados para la regeneración y desinfección de aguas residuales
 - 1.5. Usos industriales del agua reutilizada

- 1.6. Modelos de reutilización-regeneración de agua en el sector industrial
- 1.7. Otros usos del agua reutilizada
- -Tema 2. Potabilización del agua
 - 2.1. Introducción
 - 2.2. Normativa
 - 2.3. Tratamiento de potabilización del agua de superficie
 - 2.4. Desinfección del agua
 - 2.5. Tratamientos de potabilización de aguas salobres y subterráneas

RESULTADOS DE APRENDIZAJE

RESULTADOS DE APRENDIZAJE:

RAC3. Evaluar la conveniencia de realizar un tratamiento terciario en base a diferentes modelos y escenarios, según las necesidades y cumplimiento de la normativa internacional y europea aplicada a la reutilización-regeneración del agua en el sector industrial y no industrial.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método expositivo
- Estudio y análisis de casos
- Resolución de ejercicios
- Aprendizaje basado en problemas
- Aprendizaje cooperativo/trabajo en grupo
- Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

	Actividades formativas	Horas		
Actividades supervisadas	Actividades de foro	14		

	Supervisión de actividades	3			
	Tutorías (individual / en grupo)	8			
	Laboratorios experimentales y visitas	1			
	Sesiones expositivas virtuales				
Actividades autónomas	Preparación de las actividades de foro	15			
dutonomas	Estudio personal y lecturas	25			
	Elaboración de trabajos (individual/en grupo)	20			
	Realización de actividades de autoevaluación	3			
Actividades de evaluación	Examen	3			

El día del inicio del período lectivo de la asignatura, el profesor proporciona información detallada al respecto para que el alumno pueda organizarse.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Examen final	40%
Actividades prácticas: resolución de	40%
casos, presentación de trabajo, etc.	
Actividades de debate	20%

Para más información consúltese aquí

CONVOCATORIA EXTRAORDINARIA:

En la convocatoria extraordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

Actividades de evaluación	Ponderación
Actividades de debate	20%
Actividades prácticas: resolución de casos, presentación de trabajo, etc.	40%
Examen final	40%

Para más información consúltese aquí

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

- [1]. Ablo, A. D., & Etale, A. (2024). Beyond technical: delineating factors influencing recycled water acceptability. *Urban Water Journal*, 21(8), 1014–1021. https://doi.org/10.1080/1573062X.2022.2155847
- [2]. Atoche Garay, D. F., Crivelenti Voltolini, L., Gaspar Bastos, R., & Fonseca Souza, C. (2021). Effect of turbidity on ultraviolet disinfection of domestic wastewater for agricultural reuse. *Revista Ambiente e Água, 16*(6), 1–12. https://doi.org/10.4136/ambi-agua.2766
- [3]. Canganjo Lunguana, A. M., Savilolo Josias, A. F., & Silva Trujillo, A. (2021). Tratamiento y preservación del agua potable en la gestión racional de los recursos hídricos en el contexto universitario de Angola. *Opuntia Brava, 13*(1), 284–293
- [4]. Chen, L., Chen, Z., Liu, Y., Lichtfouse, E., Jiang, Y., Hua, J., Osman, A. I., Farghali, M., Huang, L., Zhang, Y., Rooney, D. W., & Yap, P.-S. (2024). Benefits and limitations of recycled water systems in the building sector: a review. *Environmental Chemistry Letters*, 22(2), 785–814. https://doi.org/10.1007/s10311-023-01683-2
- [5]. Gerenday, S. P., Perrone, D., Clark, J. F., & Ulibarri, N. (2023). Recycled water could recharge aquifers in the Central Valley. *California Agriculture*, 77(2), 63–73. https://doi.org/10.3733/ca.2023a0005
- [6]. Merino Acosta, I. P. (2024). Optimización De Una Planta Potabilizadora Compacta De Filtración Rápida Para Tratar El Agua Del Río Babahoyo. *Ciencia y Educación* (2707-3378), 5(1), 16–31.
- [7]. Navarro Caballero, T. M. (2024). La Reutilización Del Agua Y La Economía

- Circular. *Revista Catalana de Dret Públic*, 68, 59–73. https://doi.org/10.58992/rcdp.i68.2024.4185
- [8]. Torres-Cobo, L. E., Alcázar-Espinoza, J. A., Vera-Guerrero, D. I., & Verdugo-Arcos, J. A. (2024). Propuesta de diseño de una planta de tratamiento de aguas residuales domesticas a escala piloto. *Journal of Economic & Social Science Research (JESSR)*, 4(4), 107–121. https://doi.org/10.55813/gaea/jessr/v4/n4/135
- [9]. Watkins, S. (2019). Condiciones para la buena potabilización del agua con cloro. *Industria Avicola,* 66(10), N.PAG.
- [10]. Ying WANG, Xiao Jun QIAO, & ZhiBin WANG. (2022). Application of Ozone Treatment in Agriculture and Food Industry. A Review. *INMATEH Agricultural Engineering*, 68(3), 861–872. https://doi.org/10.35633/inmateh-68-86
- [11]. Zúñiga-Martínez, S., Fidencio Ibáñez-Hernández, Ó., Plata-Mendoza, J. S., Flores-Tavizón, E., & Velázquez-Angulo, G. (2022). Métodos de remoción de metales en aguas para consumo humano: Una revisión. *CULCyT: Cultura Científica y Tecnológica, 19*(2), 12–27. https://doi.org/10.20983/culcyt.2022.2.3.1

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable. Están ordenadas alfabéticamente:

- [1]. Castrillón-Jaimes, Y. C., Acevedo-Peñaloza, C. H., & Rojas-Suárez, J. P. (2020). Evaluation of the drinking water treatment system (STAP) San Fernando Los Patios urbanization, Colombia. Efficiency and quality. *UIS Ingenierías*, 19(4), 149–156. https://doi.org/10.18273/revuin.v19n4-2020013
- [2]. Cerón Hernández, Víctor Alfonso; Madera Parra, Carlos Arturo; Peña Varón, Miguel. Uso de lagunas algales de alta tasa para tratamiento de aguas residuales (2013). Ingeniería y Desarrollo, vol. 33, núm. 1, enero-junio, 2015, pp. 98-125. Universidad del Norte. Barranquilla, Colombia
- [3]. Hernández. A. (1998). Depuración de aguas residuales. España: Servicio de publicaciones de la escuela de Ingenieros de Caminos de Madrid
- [4]. Jorge-Sánchez, R., Daquinta-Gradaille, L. A., García-Álvarez, N., & Fernández-Sánchez, M. (2018). Diseño y construcción de un sistema modular de purificación de agua para Ciego de Ávila. *Ingeniería Agrícola, 8*(3), 53–59. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=13023014 1&lang=es&site=ehost-live
- [5]. Lozano-Rivas, W.A., & Lozano Bravo, G. (2015). Potabilización del agua. Colombia: Universidad Piloto de Colombia.
- [6]. Matin, A., Rahman, F., Shafi, H. Z., & Zubair, S. M. (2019). Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and

control; future directions. *Desalination,* 455, 135–157. https://doi.org/10.1016/j.desal.2018.12.009

- [7]. Metcalf & Eddy (1998). Ingeniería de aguas residuales. Tratamiento, vertido y reutilización. Ed. Mc.Graw-Hill
- [8]. Navarro, J. (1994). Reutilización de aguas residuales con destino agrícola. España: Diputación de Alicante
- [9]. Navarro, T. M. (2010). Reutilización de aguas regeneradas: aspectos tecnológicos y jurídicos. España: DIJUSA
- [10]. Rico, A. (1998). Depuración, desalación y reutilización de aguas en España. España: OIKUS-TAU SA
- [11]. Rodríguez, F. J. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Madrid: Díaz de Santos.
- [12]. Tchobanoglous, G. & Burton, F. (1991). Wastewater engineering-treatment, disposal and reuse. Mc. Graw Hill.

١	٨	EB	S	D	E	R	EF	E	REI	NC	IA:

OTRAS FUENTES DE CONSULTA:

- Base de datos EBSCO - Acceso a través del campus virtual